2-Input 1-Output 3-Circuit Video Switch

Monolithic IC MM1231~1234

November 2, 2001

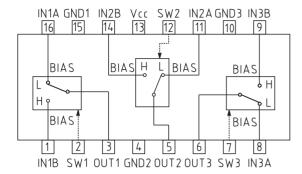
Outline

These ICs are video switch ICs incorporating three 2-input 1-output circuits for video/audio signal switching. The series includes those with a clamp circuit.

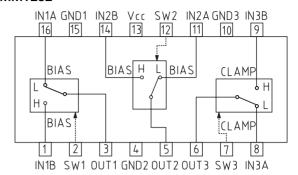
The circuit configuration table and block diagram are shown below.

MM1234 is introduced as a representative model in this document.

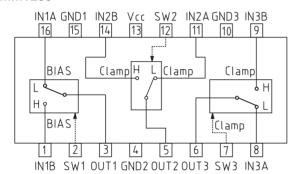
MM1231~MM1234 Series Circuit Configuration Table

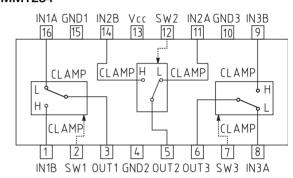

Model name	# of Inputs	# of Outputs	Clamp circuit	Power supply voltage
MM1231	2	1	No	4.6~13.0V
MM1232	2	1	1 input	4.6~13.0V
MM1233	2	1	2 input	4.6~13.0V
MM1234	2	1	3 input	4.6~13.0V

MM1231~MM1234 Input/Output Voltage Measurement Values (typ.)


Model name	Input / Output	Pov	Unit		
	voltage	5V	9V	12V	Offic
MM1231	Input voltage	2.80	5.00	6.70	V
IVIIVITZGT	Output voltage	2.01	4.30	6.00	V
	Input voltage	2.80	5.00	6.70	V
MM1232	Output voltage	2.10	4.30	6.00	V
IVIIVITZGZ	Input clamp	1.40	2.50	3.30	V
	Output voltage	0.70	2.20	2.90	V
	Input voltage	2.80	5.00	6.70	V
MM1233	Output voltage	2.10	4.30	6.00	V
IVIIVI I 233	Input clamp	1.40	2.50	3.30	V
	Output voltage	0.70	2.20	2.90	V
MM1234	Input clamp	1.40	2.50	3.30	V
	Output voltage	0.70	2.20	2.90	V

Block Diagram (MM1231~MM1234)


MM1231


MM1232

MM1233

MM1234

Control input truth table

SW	OUT
	IN1A
L	IN2A
	IN3A
	IN1B
Н	IN2B
	IN3B

Introduction of Main Model

2-Input 1-Output 3-Circuit Video Switch Monolithic IC MM1234

November 10, 1993

Outline

This IC is a video switch IC for video/audio signal switching incorporating three 2-input 1-output video switch circuit. These three circuits includes a clamp function.

Features

1. Incorporates three 2-input 1-output video switch circuits

2. Clamp function included

3. Current consumption
4. Operating supply voltage range
5. Frequency response
9.0mA typ.
4.6~13.0V
10MHz

6. Crosstalk 70dB (at 4.43MHZ)

Packages

SOP-16B DIP-16B

Applications

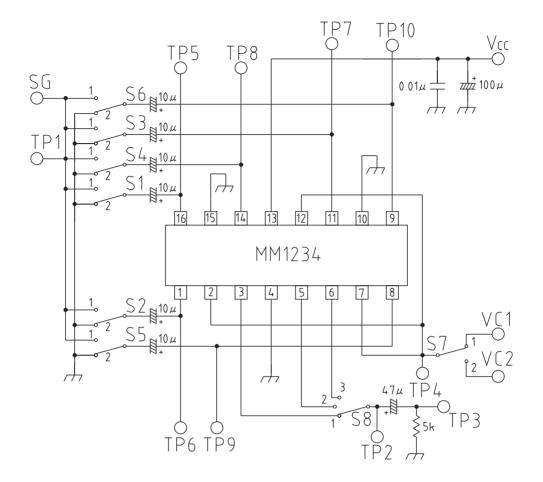
- 1. TV
- 2. VCR
- 3. Other video equipment

Pin Description

Pin no.	Pin name	Function	Internal equivalent circuit diagram
16	IN1A	Input	Vec
1	IN1B		Vcc
11	IN2A		NI - 220
14	IN2B		
8	IN3A		220
9	IN3B		
			\rightarrow
2	SW1	Switch	SW 10L
12	SW2		SW 10k
7	SW3		405
			<i>th th</i>
3	OUT1	Output	Vcc
5	OUT2		\ \frac{1}{1}
6	OUT3		76. 76.
			OUT OUT
			×
			£\$ 65
			<i>h</i>
13	Vcc	Power supply	
15	GND1	Ground	
4	GND2		
10	GND3		

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+75	°C
Power supply voltage	Vcc	15	V
Allowable loss	Pd	350 (SOP-16B)	mW
Allowable loss	ru 	1200 (DIP-16B)	111 VV


Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5.0V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Operating power supply voltage range	Vcc		4.6		13.0	V
Consumption current	Id	Refer to Measuring Circuit		9.0	11.7	mA
Voltage gain	Gv	Refer to Measuring Circuit	-0.5	0	+0.5	dB
Frequency characteristic	Fc	Refer to Measuring Circuit	-1	0	+1	dB
Differential gain	DG	Refer to Measuring Circuit		0	±3	%
Differential phase	DP	Refer to Measuring Circuit		0	±3	deg
Output offset voltage	Voff	Refer to Measuring Circuit			±15	mV
Crosstalk	Ст	Refer to Measuring Circuit		-70	-60	dB
Switch input voltage H	V _{IH}	Refer to Measuring Circuit	2.1			V
Switch input voltage L	VIL	Refer to Measuring Circuit			0.7	V
Output impedance	Ro			25		Ω

Measuring Procedures (Except where noted otherwise, Vcc=5.0V, VC1=Vcc, VC2=0V)

lk a ma	Symbol	Switch state								Managerina Dragadium
Item		S1	S2	S3	S4	S5	S6	S7	S8	Measuring Procedure
Consumption	Id	2	2	2	2	2	2	2	1	Connect a DC ammeter to the Vcc pin and measure. The
current	Iu									ammeter is shorted for use in subsequent measurements.
		1	2	2	2	2	2	2	1	Input a 2.0V _{P-P} , 100kHz sine wave to SG, and
		2	1	2	2	2	2	1	1	obtain Gv from the following formula given TP1
Voltage gain	GV	2	2	1	2	2	2	2	2	voltage as V1 and TP3 voltage as V2.
ronago gam	0,	2	2	2	1	2	2	1	2	
		2	2	2	2	1	2	2	3	Gv=20LOG (V2/V1) dB
		2	2	2	2	2	1	1	3	, ,
		1	2	2	2	2	2	2	1	For the above Gv measurement, given TP3
_		2	1	2	2	2	2	1	1	voltage for 10MHz as V3, Fc is obtained from
Frequency	Fc	2	2	1	2	2	2	2	2	the following formula.
characteristic		2	2	2	1	2	2	1	2	_
		2	2	2	2	1	2	2	3	Fc=20LOG (V3/V2) dB
		2	2	2	2	2	1	1	3	
		1	2	2	2	2	2	2	1	Input a 2 OVa a staircage ways to SC and
		2	2	2	$\frac{2}{2}$	2	2	1	1	Input a 2.0V _{P-P} staircase wave to SG, and measure differential gain at TP3.
Differential gain	DG	$\frac{2}{2}$	$\frac{2}{2}$	2	1	$\frac{2}{2}$	$\frac{2}{2}$	2	2	measure dinerendal gain at 175.
		$\frac{2}{2}$	2	2	$\frac{1}{2}$	1	2	2	3	APL=10~90%
		$\frac{2}{2}$	2	2	$\frac{2}{2}$	2	1	1	3	Ai L=10~90%
		1	2	2	$\frac{2}{2}$	2	2	2	1	
		$\frac{1}{2}$	1	2	$\frac{2}{2}$	$\frac{2}{2}$	2	1	1	
		$\frac{2}{2}$	2	1	$\frac{2}{2}$	$\frac{2}{2}$	2	2	2	Proceed as for DG, and measure differential
Differential phase	DP	$\frac{2}{2}$	2	2	1	$\frac{2}{2}$	2	1	2	phase.
		$\frac{2}{2}$	2	2	2	1	2	2	3	prince.
		$\frac{2}{2}$	2	2	2	2	1	1	3	
		2	2	2	2	2	2	2	1	
		2	2	2	2	2	2	1	1	
Output offset		2	2	2	2	2	2	2	2	Measure the DC voltage difference at TP2 for
voltage	Voff	2	2	2	2	2	2	1	2	each switch for VC1 and VC2.
3333		2	2	2	2	2	2	2	3	
		2	2	2	2	2	2	1	3	
		1	2	2	2	2	2	1	1	Assume VC1=2.1V, VC2=0.7V. Input a 2.0V _{P-P} ,
		2	1	2	2	2	2	2	1	4.43MHz sine wave to SG, and given TP1
0		2	2	1	2	2	2	1	2	voltage as V4 and TP3 voltage as V5, C _T is
Crosstalk	Ст	2	2	2	1	2	2	2	2	obtained from the following formula.
		2	2	2	2	1	2	1	3	
		2	2	2	2	2	1	2	3	C _T =20LOG (V5/V4) dB
Switch input voltage H		2	2	2	2	2	2	1	1	Impress an optional DC voltage on TP5 7, 9 and
	VIH	2	2	2	2	2	2	1	2	TP6, 8 and 10. Gradually raise from VC1=0V.
		2	2	2	2	2	2	1	3	TP4 voltage when TP6, 8, 10 voltage is output
Curitab is and		2	2	2	2	2	2	1	1	on TP2 is Vih. Gradually lower from VC1=Vcc.
Switch input	VIL	2	2	2	2	2	2	1	2	TP4 voltage when TP5, 7, 9 voltage is output on
voltage L		2	2	2	2	2	2	1	3	TP2 is VIL.

Measuring Circuit

